
drmCrop2	Guideline	
The	domain	reference 	model	for	crop	production,	version 	2		

Document type: Draft

Date: August 26, 2015.

Background: This document is an explication of the domain reference model drmCrop2.

Editor: Dr. Ir. D. Goense, daan@pragmaas.com

Sponsors: Het Programma Precisielandbouw (PPL)

 PPS AgroConnect.

 EU research project FIspace.

 Farm Digital

Table	of	Contents	
1 Introduction. .. 4

1.1 Developments in reference models for crop production. ... 4

1.2 Why drmCrop .. 5

1.3 Objective .. 5

2 Materials and Methods. .. 6

3 Structure of the rmCrop Model. ... 6

3.1 General. ... 6

3.2 BPMN 2.0 Business Process View. ... 7

3.3 Use case model ... 7

3.4 Domain model ... 7

3.4.1 drmCrop ... 7

3.4.2 DrmCropNL ... 8

3.4.3 FIspaceShortTermSolutions. .. 8

3.5 Dynamic view .. 8

3.6 External models ... 8

3.6.1 Models as reference ... 8

3.6.2 Models that are or can be used. ... 9

3.7 External XSD schemas .. 9

3.7.1 Schema’s for reference. .. 9

3.7.6 Used schema’s .. 10

3.8 Java model Crop. ... 10

3.9 Mapping drmCrop .. 10

3.10 MySQL model Crop. .. 10

3.11 XSD model crop. .. 11

3.12 Deployment Model. .. 11

3.12.1 Platforms .. 11

3.12.2 Other Sub Packages. ... 11

4 Modelling and naming conventions. .. 11

1. Modelling and naming conventions for the domain model drmCrop. 11

4.1.1 General .. 11

4.1.2 Specification and typographical conventions ... 11

4.1.3 Naming of classes and attributes .. 12

4.2 Name versus Designator .. 12

4.3 Identifiers ... 12

4.4 DataTypes. .. 12

4.5 Geometry types and or classes. ... 13

4.6 Code. ... 13

4.7 Enumeration or coding list. .. 13

4.8 A Type enumeration or a Subclass. ... 13

5 Issues to be solved. ... 14

6 Abbreviations ... 16

7 Definitions .. 16

8 Literature. .. 16

9 Appendix. Background on some patterns. ... 17

9.1 Allocations .. 17

9.2 Job Task Operation .. 30

 	

1 Introduction.	

1.1 Version	2	
Version 1 was developed from the perspective of arable farming with emphasis on precision agriculture.
Version 2 is developed in cooperation with stakeholders from the horticulture and flower production
chains where focus is on tracking and tracing up to the retail market. The result is that a number of
classes are added to cover the additional requirements and that some classes have name changes to
become acceptable in a wider context. Also some definitions are sharpened or changed.

1.2 Developments	in	reference	models	for	crop	production.	
During the years several agricultural reference models are developed as basis for standardised
information exchange. For crop production these include:

 Informatie Model Open Teelten", IMOT
 EDI-Teelt 1-3
 Computer Integrated farming, CIA
 ISO11783-part10
 AgroXML
 EDAPLOS
 UN-CEFACT
 EDI-Teelt plus
 EDI-Teelt++

An important bases for many of the listed models is the "Informatie Model Open Teelten", IMOT,
(1987) which is the first reference model developed for arable farming in the Netherlands.

EDI-Teelt version 1 to 3 is based on the IMOT model, though the entities and its mutual relations of
IMOT were neglected and only a flat model with attributes from IMOT was left. In the version 3, some of
the entities with their hierarchy were reintroduced.

Computer Integrated Farming, CIA. This model had IMOT as a basis, but the classical relational
entity model was converted to an object oriented model, with extensions for precision Agriculture. It also
took animal husbandry into account, resulting in some abstract classes covering both branches of
agriculture.

ISO11783 Part 10. Part 10 of ISO11783 started as a subset of the CIA model, but developed itself
under WG1 of ISO/TC23/SC19.

AgroXML is a German reference model which clearly shows characteristics from IMOT and ISO11783.

EDAPLOS is a French reference model, which has clear signs of inheritance of IMOT, but also some very
pragmatic solutions based on messages between parties in France that were used at the moment of
development.

UN-CEFACT. EDAPLOS was the start of the arable farming part for core components in UN-CEFACT.

EDI-Teelt plus was an initiative in the Netherlands under the umbrella of the GEO-Boer project. It is
characterised by very abstract classes. It also introduced the geometry classes required for precision
agriculture. This model was the basis for data exchange on agricultural fields between farm management
systems and the Dutch government.

The reference model EDI-Teelt++ was an initiative from the Program Precision Agriculture (PPL) of the
Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I, now EZ). PPL promoted the
development and introduction of Precision Agriculture in the Netherlands. EDI_Teelt++ is intended as a
reference model for all data that is handled in Precision Agricultural applications. Data is defined and the
structure of the data is made visible in UML class diagrams. EDI-Teelt++ was clearly focussed on the use
of XML messages between farm management systems and services.

1.3 Why	drmCrop	
When looking at the mentioned models, there is a large communality in the classes and attributes of the
different classes. This is not surprising as all applications in crop production that are computerised
require sooner or later the same information to perform properly. The main differences in the above
mentioned models is in the way the information is structured in classes and the applied abstraction level.
The different reference models also reflect the requirements of the time they were developed. During
development of IMOT it was expected that everything would soon be computerised, so the model took all
available knowledge of agricultural research into account. Much attention was paid to strategic, tactical
and operational planning, based on models developed in academia. This proved to be too optimistic, and
later models restricted themselves in the number of applications that were covered. At this moment
(2013) we see, apart from the introduction of geographical aspects, applications in development which
require again more types of data.

Another characteristic is that the reference models reflect their time of origin and the main technology
used at that time. IMOT used entity relationship diagrams and was focussed on relational data bases as
means of data storage. CIA introduced object orientation while ISO11783-part10 had an ERD approach.
Mentioned models used initially a proprietary exchange format (ADIS), which was soon shifted to the use
of XML. AgroXML had, as the name indicates, from the beginning onward XML in mind. The technology
which is used in the different models is reflected in some attributes and the way in which relations
between classes are modelled.

Now newer technologies for data communication like JSON and RDF come along, it is realised that a
reference model should restrict itself to a domain model which is implementation and platform
independent. That is the reason why drmCrop was started as a further development of EDI_Teelt++.
The latter had clear characteristics of XML. It used data types which were based on XML; ID and
sometimes IDREFS were modelled. It held also some characteristics of relational databases by the use of
Id’s and modelling junction tables for many to many relations. It is the intention to remove or change all
those implementation specific characteristics from the domain reference model.

drmCrop is the basis for standardized messages that will be used in data exchange between applications
and between parties in the Netherlands. Messages will now, 2013, be based on XML, but drmCrop is also
intended as the reference for other methods of data exchange like JSON and RDF. On the longer term it
should also be possible to generate messages for band width efficient protocols like that used on the CAN
bus by ISO11783, or on message hopping wireless sensor networks from the reference model. The data
elements that are relevant for specific messages are made visible in message specific diagram(s).

1.4 Objective	
The objective is to provide a reference model for crop production which can be used as a basis for
different means of standardised data exchange in agriculture.

The reference model reflects the classes of objects which are relevant in crop production, gives clear
definitions of those classes, specifies the relevant attributes and shows the mutual relations between
classes.

Different methods of data exchange will be specified by a well-defined transformation from the reference
model to the implementation/platform specific model. This will take care that data types and attributes
that are specific for the means of communication will be inserted by the transformation. An example is
an attribute defined as Real in the reference model will be converted to gml:decimal in an XSD model.
For different purposes, also different subsets of the reference model can be used. Though, the name and
definition of transposed classes and attributes will not be changed, and for their meaning the domain
reference model is the only source.

It is the intention to use as much as possible already existing standards. For geometries the classes will
be used as defined by the OGC consortium (ISO19107) and the transformation of those classes to XML is

based on GML1. Data types are in the reference model limited to the basic, implementation independent
data types like Boolean, Integer, Real and String. Some data types for attributes might require a further
specification by their nature. Examples are URI’s or designators with restrictions in allowed characters. In
that case as much as possible XSD types are used. (Examples are anyURI or token).

2 Materials	and	Methods.	
UML is used as the modelling language, Enterprise Architect (EA) is used as the tool to document the
domain reference model. EA is also used to transform the domain model in platform specific models.

3 Structure	of	the	rmCrop	Model.	
The Enterprise Architect model rmCrop.eap is divided in a number of packages and sub packages.

 BPMN 2.0 Business Process View (e)
 Use case model (e)
 Domain model

o drmCrop
o drmCropNL
o FIspaceShortTermSolutions (e)

 Dynamic view (e)
 External models (e)

o DataDictionaryPlantProtectionProducts
o Fertilizers
o ISO 00639 Language Codes
o ISO 19107 Spatial schema
o ISO 19111 ReferencingByCoordinates
o ISO 19123 Coverage Geometry and functions.
o ISO 19130 Sensor Data
o AgroXML

 External XSDs (e)
o GML

 Java model Crop, (e)
 Mapping drmCrop (e)
 MySQL model Crop (e)
 WSDL Phytophthora Control (e)
 XSD model crop. (e)
 Deployment Model (e)

(e) only available in the extended version of the model. This is available on request (e-mail:
daan.goense@wur.nl)

3.1 General.	
rmCrop is a model in development. It does not claim to be complete and not all classes, attributes and
relations are checked yet in respect of modelling guidelines defined hereafter.

Classes which are relevant for sending a complete cropping scheme from a farm to other parties are, as
far as foreseen yet, complete. This is also the case for classes which are used in a fertilizer advise
coming form an advisory service to a farmer. These classes can also be used for a crop protection advise.

All other classes originate from historical models and mapping against other models or reflect
requirements from projects in which drmCrop is used as a reference. A number of choices which are
made must be seen as proposal, open for discussion.

A number of items still to be completed are:

1 This proved to be difficult, as GML is not a one-to-one representation of ISO19107. See for example a
SurfaceBoundary as element of a Polygon in ISO19107, which is not used in gml:Polygon.

 Definitions of attributes are not complete.
 Minimum and maximum values for those attributes which represent a value are not specified

yet.
 A check on national classes or attributes that should belong in a national sub model like

drmCrop_NL is not complete, so there might still be attributes which are typical for the
Netherlands.

 Mapping on ISO11783 is not complete
 Mapping on AgroXML is not complete
 For classes with geometry aspects the most suited OGC standards must be selected. This is done

for Point, Linestring, Polygon, MultiPoint and MultiSurface, but Grid has to worked out in more
detail.

 The patterns for units and measures (Rate, Value, etc.) can be improved by (partly) adopting
the QUDT ontology of NASA.

 The templates to generated XML, Java and DDL models need changes and the generated models
have to be actualized. At this moment still manual changes in the transformed models must be
made.

 Etc.

3.2 BPMN	2.0	Business	Process	View.	
This package holds the description of some business processes which are realised in the FIspace trial
“Crop Protection Information Sharing”. This trial implements a system for Phytophthora control in
potatoes.

There is some redundancy in the components.

A check has to be done on the correct message / data flows.

The “Total View Crop Protection” diagram is rather complete.

3.3 Use	case	model	
The use case model shows some use cases as defined in the ISO/TC23/SC19/WG5 working group for
wireless communication in Agriculture. It describes some aspects of fleet management, task update and
job control.

3.4 Domain	model	

3.4.1 drmCrop	
This is the core of the model. drmCrop describes classes of objects and their attributes which are
relevant for crop production.

All identified classes for crop production are listed in the drmCrop package. Also a number of diagrams
are specified. Each diagram has a name which indicates a particular aspect of crop production and shows
the classes which are relevant for that aspect. Several aspects have a further explanation in the
Appendices with examples.

The drmCrop domain model has four sub packages.

DataTypes, defines data types which are specific for drmCrop. (See "DataTypes" under "Some
 Modeling and naming conventions used")

Enumerations specifies enumeration tables that are specific for drmCrop. (See "Enumerations
 versus Code Listst" under "Some Modeling and naming conventions used")

Geometries. Specified geometries are based on ISO19107 and GML. As the ISO 19107 specification
includes methods as part of its class specifications, this model should be seen as a platform specific
implementation model, which in analogy to the approach in rmCrop should result from a transformation
from a platform independent domain model. GML is the XML representation of ISO19107 and as such
also a platform specific model. This package Geometries is a reverse engineering from both ISO19107

and GML and should be able to act as platform independent model. There is no transformation template
specified for the Geometry package, as the results are already well published by ISO19107 and as GML
schema’s. The difficulty is that GML is not a one to one transformation from ISO19107. (see footnote 1
on one of the previous pages.)

XSD_Types. Here some data types from the XML data types as published by W3C are listed, which are
used as data type in drmCrop.

3.4.2 DrmCropNL	
There are some attributes of classes which are specific for the Netherlands. Most have to do with national
legislation. It is assumed that they are not used in other countries. Those specific national attributes, or
eventually classes are specified as subclass of classes in the drmCrop package.

The same procedure can be used for other countries. A clear example is the “Ackerzahl” for Fields in
Germany (and some other countries in Europe?), which should be specified in a drmCrop_DE package.

3.4.3 FIspaceShortTermSolutions.	
A short term solution is chosen in the FIspace project to represent some essential growth stages of a
CropField. Emergence date and the date of start of tuber formation in potatoes are made attributes. A
correct solution is a reference to a growth stage coding table, but this complicates the data structure and
processing considerable.

3.5 Dynamic	view	
A start is made to model the dynamics of some classes which can change their state based on events.

In this package there is also The Phytophthora Control Sequence Diagram, which shows the
messages exchanged so far in the FIspace trial for Crop Protection Information Sharing.

3.6 External	models	
External models are specifications defined as class models. Some specifications are specified as XSD
schema’s. See 3.7.

The whole model contains two types of external models:

1. External reference models which are only used as a reference, something to look at or to provide
ideas. These can be models describing the same domain (crop production) or related domains.
There is an external model for Fertilizers and Crop protection material. (See also external XSD
schema’s)

2. Models which are used in the standards based on drmCrop. It is not intended to (re)model
entities already well defined by other organisations. A clear example is ISO19107 which
describes geographic objects.

3.6.1 Models	as	reference	

3.6.1.1 Data	dictionary	plant	protection	products.	
This is a UML model representation of a data dictionary for plant protection products. This is formulated
by the European Commission, DG SANCO.

3.6.1.2 Fertilizers.	
UML model for fertilizers as formulated by AgroConnect, with consultation of the fertilizer industry.

3.6.1.3 ISO	1930	Sensor	Data	
The OGC model for sensor data. This is only used as a reference yet. It can be considered to use classes
from this standard.

3.6.1.4 Left	overs	of	EDI‐Teelt	plus.	
Classes which were in the predecessor model EDI_Teelt++ and are not used in drmCrop. (Mostly
junction tables in many to many relations) This package can be deleted when a complete check is made.

3.6.2 Models	that	are	or	can	be	used.	

3.6.2.1 ISO	00639	Language	codes.	
This is a code list which can be relevant for data exchange in crop production.

3.6.2.2 ISO	19107	Spatial	schema.	
This is the basic class model on which GML is based. This model also specifies methods and can be seen
as a basis for implementing geometries.

3.6.2.3 ISO	19111	Referencing	by	coordinates	
This model specifies classes around coordinate reference systems, datums and conversions between
systems.

3.6.2.4 ISO	19123	Coverage’s	
This model specifies Grid.

3.7 External	XSD	schemas	
Some specifications are given in the form of xsd schema’s They can in analogy to external models be
separated in

1. External reference schema’s which are only used as a reference, something to look at, to provide
ideas. These can be models describing the same domain (crop production) or related domains.
Important external schema’s for reference are AgroXML and ISO11783. Both cover the same
domain. The first one is used as reference. The same is true for ISO11783, but this schema is
also essential in crop production as it is the standard to exchange data with task controllers on
farm machinery. The possibility to map drmCrop on ISO11783 as specified in 3.9 is therefore a
requirement.

2. Schema’s which are used in the standards based on drmCrop. It is not intended to define entities
already well defined by other organisations. The most basic schema is the basic schema of XML.
Another important schema is GML, the XML specification of ISO19107.

3.7.1 Schema’s	for	reference.	

3.7.2 AgroXML	
German XML model drafted in several German precision agriculture projects (PreAgro). Maintained by
KTBL.

3.7.3 ISO11783.	
ISO11783 part 10 is specified as xsd, but as its entities are identified by three character names and its
attributes are in the XML schema specified as A, B, C, etc., a model reverse engineered from the schema
is useless. For that reason an XML model of ISO11783 part 10 is drafted on basis of the entity
relationship diagram in the most recent version of the FDIS of part 10.

This is not complete yet.

3.7.4 ISO11783_TaskFile_20050104.	
This is the reverse engineered XML model representation forom the xsd’s as published in 2005.

3.7.5 EDI_Crop	version	4.	
In the Netherlands EDI_Crop version 4 is the present standard for data exchange in crop production. For
different types of messages, different schema’s are generated, which holds only the mandatory and
optional classes and attributes for those messages.

EDI_Crop V4.0 is based on drmCrop, though in some cases UNCEFACT constructs are preferred, and
sometimes short term solutions are chosen by using constructs of EDI_Teelt version 3.

At present the schema for the crop recording is specified.

3.7.6 Used	schema’s	
The following schema’s are used in drmCrop:

3.7.7 XSDDatatypes.	
A schema defined by W3C. It is the basis xsd of xml, defining a number of basic data types like "float",
"int" and "string", but also subset of "string" like "token and "NCName". Also identifiers to use in XML
files like "ID" are defined in this Schema. The XSD data types are used when generating a XML model
from drmCrop.

3.7.8 GML	version	3.2.1.	
Contains different xsd''s as defined by OGC (Open Gis Consortium). They define the geometry objects,
which are used to describe geometries in the context of drmCrop.

THE SCHEMA’S OF gml WHICH ARE OF RELEVANCE FOR drmCrop ARE IMPORTED AS MODEL IN THIS
PACKAGE, THE CLASSES USED BY drmCrop ARE SPECIFIED IN THE SUB-PACKAGE “Geometries” OF
drmCrop. IN A LATER STAGE A CROP PRODUCTION SPECIFIC GML PROFILE WILL BE SPECIFIED.

3.8 Java	model	Crop.	
In principle it is possible to transform the domain model in an implementation model in java (or C++ or
any other computer language). This is not the goal of the reference model rmCrop, but done for a limited
number of classes to check whether the domain model is specified in such a way that this transformation
is possible.

3.9 Mapping	drmCrop	
The package “Mapping drmCrop” holds two types of mapping:

1. Mapping Geometries of drmCrop on ISO19107 and GML.

ISO19107 and GML are already specified by OGC, so no XML and java models are generated from
drmCrop’s sub package Geometries. To show how the classes specified in Geometries are mapped
on on ISO19107 and GML this overview is made.

2. Mapping as a reference.

As check whether classes and attributes that are specified in drmCrop cover the whole domain of crop
production, a start is made to compare drmCrop with other models or schema’s as specified in the
packages “External Models” and “External Schema’s”. There are mappings made by visualizing the
different classes near each other.

As it is not possible to draw lines in EA diagrams, these overviews are not always very clear. A better
method to make the mapping visible must be looked after.

3.10 MySQL	model	Crop.	
Generating of database tables from a DDL model which is generated from a domain model is possible,
but not the goal of rmCrop. To check whether the domain model is specified in such a way that this is
possible at all, this is done for a limited number of classes.

3.11 XSD	model	crop.	
As XML is foreseen now (2013) as the main protocol to exchange information between parties, an xsd
model is generated from the domain model. Typical XML elements are added to the classes of the
domain model like an ID for root classes and an IDREF when there is a relation to one instance of
another class. (IDREF IS NOT REALISED YET).

The generic data types are converted to xsd data types as follows:

 Boolean --> xsd:boolean
 Integer --> xsd:int (which limits it to 32 bits). WHEN MAXIMUM AND MINIMUM VALUES ARE

SPECIFIED FOR THE RELEVANT ATTRIBUTES, A MORE SPECIFIC DATATYPE CAN BE
GENERATED.)

 Real --> xsd:decimal
 String --> xsd:string

Separate packages DataTypes and Enumerations are generated for the data types and enumerations
specified in drmCrop.

There is no XML model generated for Geometries, as this is already published as GML models and
schema’s.

There is also no XML schema generated for XSD_Types, as this is available from W3C.

3.12 Deployment	Model.	
This will represent the devices and environments used to implement Crop productrion, but are in fact not
part of the Crop Production Domain.

3.12.1 Platforms	
At this moment only used to identify different types of (computer) platforms, which are used in the
context of crop production.

3.12.2 Other	Sub	Packages.	
Some devices are already represented in the other sub packages, but this must still be completed.

4 Modelling	and	naming	conventions.	

1. Modelling	and	naming	conventions	for	the	domain	model	drmCrop.	

4.1.1 General	
The domain model is kept as much as possible independent from all types of implementation
characteristics. This means that:

 No identifiers are modelled, with exception of a Global Unique IDentifier (GUID), which is seen
as an attribute of the object. (not strict an attribute because it has a complex nature)

 The model is not based on any computer language, which means that only a limited set of data
types is used. (for example “Real”)

 There are no association classes modelled for many-to-many relations, except when they hold
attributes.

 There are no foreign keys modelled as attributes.

4.1.2 Specification	and	typographical	conventions	
For each Class a Definition is given and in most cases a Remark is made which contains further
explanation. In some cases examples are given. When there are discussion points, those are printed in
CAPITALS. When in the definition or remark a reference is made to other classes in the domain model,

the class name is printed in bold. To stay strict to the class name, multiples are written with a ‘s, in spite
of the fact that this in most cases is grammatically not correct. When the name of an attribute is used,
that name is given in cursive bold.

The classes with their attributes are shown in the diagrams and have the default color of EA (light crème)
Enumerations have a dark yellow background colour and data types defined in EDI_Teelt++ a light
yellow colour. Geometries as specified for drmCrop have a light rose colour. Geometries that are data
types following the criteria mentioned in

4.1.3 Naming	of	classes	and	attributes	
 For both, Classes and Attributes, the principle of "Upper Camel Case" is used. (THSI IS THE
CONVENTION ALSO USED IN ISO11783. ONE CAN QUESTION WHETHER THIS IS CORRECT FOR
ATTRIBUTES)

When a class is defined as a data type, the expression Type is always used at the end of the class name.
When the class is not a data type the expression Type at the end is not used. In most cases, where there
is a natural tendency to use the expression type, but not a data type as defined under 4.4 is intended,
the expression Category is used. Examples are ProductCategory, TaskCategory or CropClass instead of
ProductType, TaskType and CropType. (CropClass is used instead of CropCategory to stay conform FAO
terminology)

Enumerations have always the expression 'Enumeration" at the end of their name. The values of the
enumerations are written in CAPITALS.

4.2 Name	versus	Designator
In analogy to ISO11783 part 10, the expression "Designator" is used for the identification which is used
when people talk or write about a specific instance of an object. (Following a language purist in the early
ISO WG1 meetings, the expression "name" should be reserved for natural persons. (and I (DG) guess
that some animals might also have a Name).

As a Party has a Designator, and Person inherits from Party, a Person has, apart from a first name and a
last name also a Designator by inheritance, which could for example be used for a less formal name used
in daily communication.

4.3 Identifiers	
Identifiers and references are not specified in the domain reference model drmCrop. The only Exception
is XxxGUID, where Xxx stands for the name of the class. GUID is seen as an attribute of the type
GlobalUniqueIdentifier and must guarantee that the object is worldwide unique identified. The XxxGUID
is given by the Organisation which is the creator of the object.

ThirdPartyxxxGUID is an optional additional attribute which is also of the the GlobalUniqueIdentifierType
that is assigned by another Organisation then the "creator” of the object.

The name of the class, Xxxx is not used in case the identifier(s) are defined in a superclass with
subclasses that inherit the identifier.

4.4 DataTypes.
A data type is a special kind of classifier, similar to a class. It differs from a class in that instances of a
data type are identified only by their value.

So, when a class can have an identifier for identification of an instance (whether that is a GUID or a key
in a database table), it is a class. A clear example is Party. As super class of Organization, Person and
Equipment it has an identifier for identification of instances. An Address is an example of a data type.
The value of the different attributes of the Address identifies the address. A decimal is also a very clear
example of a data type.

4.5 Geometry	types	and	or	classes.	
It is not the intention to model geometries as classes or data types in drmCrop. Classes from OGC
models or schema’s should be used. The sub package Geometries is only used to specify the OGC classes
which are relevant for drmCrop. There are a few classes which can be called geometry, like for example
a FieldBorder. This is done when they have a particular meaning in crop production. In general they
inherit the characteristics of OGC geometries, or have relations with OGC geometries.

4.6 Code.
In the DataTypes package of drmCrop the data type CodeType is defined. The CodeType has a Code as
attribute which is from the data type xsd:token. A Code is part of a CodeList, which is specified as
CodeListType, so in implementing CodeType in a data base, a foreign key to CodeList can be specified,
while in an XML file an IDREF can be given as reference to the CodeList.

The use of two data types; CodeType and CodeListType, deviates from "code" as defined in UN CEFACT.
In UN CEFACT the "code" is not de-normalized, as all attributes of CodeListType as defined here, are
made attribute of "code" in UN CEFACT.

In the description of the attributes which are of the data type CodeType, is specified in which CodeList
the codes can be found. The value of the attributes of CodeListType are given in the attribute description.
The CodeList specified there is either mandatory or default. In case of a mandatory or default CodeList, it
is only required to specify the Code attribute. The CodeList can also be as "free", which means that it is
left open to the user, or parties of users, to choose a CodeList. When a non default or free CodeList is
used, the attributes of CodeList must be specified.

THIS MIGHT BE TOO MUCH FOCUSSED ON THE DUTCH IMPLEMENTATION.

4.7 Enumeration	or	coding	list.	
An enumeration is a data type with a limited number of possible items. The name represents the
meaning of that item. A coding List is a list of objects of which the unique code is one of the attributes.

The enumeration becomes part of the software for implementation. The consequence is that
enumerations should be restricted for those items who are expected to be stable over time. Addition of
an item of an enumeration list requires a change in the specification of the standard and also a change
and recompilation of the implementation software.

Items that change regularly must be specified in coding lists. The class of objects, with its attributes, in
the coding list, is specified in the standard. The objects themselves are items in a database or
communication file.

4.8 A	Type	enumeration	or	a	Subclass.	
Often a choice must be made whether a specific type of class can be indicated by an enumeration
indicating the type/castegory of that class, or whether it should be modelled as a subclass. An example
of the difference in approach is LineString as used in ISO11783 with enumeration values of 1 through 9
for different classes of object formed by the LineString. In drmCrop the different classes are modelled as
for example GuidanceReferenceLine and Track which are sub classes of LineString. The consequence of
the use of a subclass is that the software to implement the applications must be recompiled as soon as a
new subclass is required. A comparable situation is described by Johnsons and Woolfe, 1996. The
conclusion is that subclasses should be used when:

 The subclass has attributes which are relevant/specific for the subclass and not for other
subclasses

 The subclass has different behaviour which should be taken care of by subclass specific
procedures.

 The number of subclasses is known and expected to be stable over time.

5 ToDo	

5.1 Issues	to	be	solved.		
1) All the data types of type "string" are to be checked whether they can stay as "string" (which

seldom will be the case) or should be replaced by : normalizedString, token, Name or NCName. The
"UN CEFACT Text . Type" allows strings, normalized strings and tokens, so this will leave too much
freedom in cases where the allowed characters should be restricted.

2) Designator is now typed as String. Proposal: make it a token, which means that all the occurrences
of #x9 (tab), #xA (linefeed), or #xD (carriage return) are replaced by an occurrence of #x20
(space) and contiguous occurrences of spaces are replaced by a single space. Leading and trailing
spaces are removed. The use of Name adds the restriction that the Designator should start with a
letter, underscore or colon. The use of NCName adds the restriction that no colon should be used.

3) Pal and Pw are now attributes from a Field. Proposal is to leave it as it is but make it in future
versions a normal PropertyValue of a PropertyZone. (This is specific for the situation in the
Netherlands)

4) Phosphate status is left as a separate class, connected to Farm. A change should be made toward a
class QuotaTransfer which can be used to specify transfer between years for all categories of inputs.
The phosphate status of arable land and grassland can be calculated from the PropertyValue's that
refer to P2O5 for the PropertyZone's distinguished in the Farm. In that case point 3 should be
adopted accordingly. (This is specific for the situation in the Netherlands)

5) Should we remove all attributes which are a reference to a Designators (or Name) of a coded item?
The Designator is already specified in the coding list. (See for example apart from VarietyCode also
VarietyName as attribute in CropField.

6) RegulatorySoilType is now an attribute of CropField. The Dutch government assigns those SoilTypes
to what they call an AAN perceel, which means that it becomes an attribute of a "Field". Leave it for
now to CropField or replace it to "Field"? See also issue 8) in the next paragraph to be solved later.
(This is specific for the situation in the Netherlands)

7) When should we use different sub-classes and when use only one (upper) class with a type attribute
defined in a coding list, which differentiates the meaning and role of the upper class?

8) Naming of attributes. For both, Classes and Attributes, the principe of "Upper Camel Case" is used.
(There are modeling guidelines (DatexII) where for attributes the principle of "Lower Camel Case" is
used.)

9) The relations between the classes qualified as Associations, Compositions or Aggregations are not
checked on their correctness and consistency and require a further check. The relations drawn are
found valid, and the multiplicities are specified as they are intended. The exact form of these
relations, Associations, Compositions or Aggregations, might be changed.

10) There are in respect of converting XML schemes to UML diagrams two possibilities: 1) A DataType is
an attribute of the Class 2) A DataType is drawn as a Class which has an association (Composition)
with the Class that "Owns" the dataType. We must decide whether we model DataType in XML
models as attribute or as composition.

11) Definitions of attributes must be completed.
12) Minimum and maximum values for those attributes which represent a value or quantity must be

specified.
13) A check on national classes or attributes that should belong in a national sub model like

drmCrop_NL is not complete.
14) Mapping on ISO11783 is not complete
15) Mapping on AgroXML is not complete
16) For classes with geometry aspects the most suited OGC standards must be selected.
17) Mapping of geometries on GML respectively ISO19107 must be validated.
18) The patterns for units and measures (Rate, Value, etc.) can be improved by (partly) adopting the

QUDT ontology of NASA.
19) A Customer can also be a Person. How to deal with multiple inheritance?

5.2 Work	still	to	be	done.	
1) The generated XML, Java and DDL models are not in line with the domain model drmCrop

version 2. The templates need updates and the generated models have to be actualized whith
changes from version 2.

2) Add attributes to Order and Delivery.
3) Look for a construct to specify between which possibilities an PROPOSED_CHOICE must be

made.

6 	Abbreviations	
EA Enterprise Architect UML case tool.

OGC Open GIS Consortium

7 Definitions	
Leaf class. A leaf class is a class which is a subclass of another class. This is relevant, as it is not
required to generate an ID when transforming the domain model to an XML model.

Root class. A root class is a class which has sub-classes.

8 Literature.	

Biesalski, E. 1954. Landarbeit und Technik. Heft 32. Eine schriftreihe des Max-Planck-Institutes für
Landarbeit und Landtechnik. Herausgegeben von Prof. Dr. G Preuschen, bad Kreuznach. Fünfte,
erweiterte Auflage. Verlag Paul Parey, Hamburg und Berlin. 1954.

Goense, D. and J. W. Hofstee. 1995. Deliverable Report 1.2.c, Information Model, Annex 2.3.9.
ESPRIT III project 7318. Computer Integrated Agriculture.

Johnson, R. and B. Woolf. 1996. The Type Object Pattern.
http://www.cs.ox.ac.uk/jeremy.gibbons/dpa/typeobject.pdf

 	

9 Appendix	I.	Background	on	some	design	patterns.	

9.1 Allocations	
Allocation has two subclasses: ProductAllocation and ProduceAllocation which deal with product and
produce respectively.

Figure 1. Allocation with two subclasses

Allocation is used to describe the application of products on field surfaces, application of (protecting)
products on produce, sorting produce, mixing products or produce, etc. These activities in respect of
allocations are specified hereafter.

9.1.1 Harvesting	from	plots.	

Harvesting is an Operation which results in one or more ProduceAllocations. The farm business process
determines on which level of detail the ProduceAllocations will be recorded.

In case of global registration only one ProduceAllocation and one HarvestingZone exists for the whole
CropField. The BatchLot will be collected in one or more storages, but holds one BatchLot identifier
pointing to that HarvestingZone.

In case of detailed registration, a harvesting machine will keep track of the surface which is harvested
when a particular container is being filled. This container can be located on the harvesting machine like
on grain combines, but can also be a tipping trailer driving near the harvester like most choppers. The
surface is a HarvestingZone and will be the part of strips harvested for one particular filling of the
container. After emptying the container a new BatchLot is created.

When implementing detailed registration, it will for example be the combine harvester which records the
harvesting zones and the ProduceAllocation when unloading. The time and geographic position of this
allocation can be recorded. When a trailer is equipped with loadcells for weighing, it could also record a
loading action around the same time and very close to the position recorded by the combine. So there is
a redundant recording of the allocation possible with slightly different quantities, time and location.

class Allocation

«abstract»
Allocation

{root}

- AllocationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- AllocationStatus: StatusEnumeration

ProductAllocation ProduceAllocation

Figure 2. ProduceAllocation in the context of harvesting.

 	

class Allocations_Harvesting

ProduceAllocation

Harvesting

Produce
{root}

- ProduceCode: CodeType [1..*]
- ProduceDesignator: String

Zone

- ZoneGUID: GlobalUniqueIdentifierType
- ThirdpartyZoneId: GlobalUniqueIdentifierType
- ZoneDesignator: String
- ZoneSurfaces: MultiSurface [0..1]

«abstract»
Allocation

{root}

- AllocationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- AllocationStatus: StatusEnumeration

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

Harv estingZone

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdentifierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- EarliestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

AbsoluteTiming
{root}

- BeginDateTime: DateTimeType
- EndDateTime: DateTimeType
- AbsoluteTimingStatus: StatusEnumeration
- TimelinesValue: Real [0..1]

1

0..*
+collected

0..10..*

0..1

0..1

0..* 1

0..* 0..1

9.1.2 Applications	on	Crops.	
An Operation which applies products (fertlizers, seed, plant protection products, etc.) is planned for a
CropField.

An Operation of this type has one or more ProductAllocations. In case of precision Agriculture there
are different TreatmentZones for which a different ProductAllocation can be specified. (A CropField has
always at least one TreatmentZone).

The ProductAllocation specifies the Quantity or QuantityPerArea and refers to either a Product or to a
particular BatchLot of a Product. The latter will often be the case when applying manure, such that the
mineral content of that BatchLot can be accounted for. (It is possible to specify which BatchLot of a Plant
Protection product is used).

An Operation can also have more ProductAllocations to account for differences in rate depending on the
time of application. An example is a fertilize advice, which might have different rates depending on the
time of application. In the ProductAllocation, the status attributes with the value PROPOSED_CHOICE can
be used for that.

TODO Look for a construct to specify between which possibilities an PROPOSED_CHOICE must be made.

Figure 3. ProductAllocation in the context of application of products on a CropField.

 	

class Allocations_OnCrops

«abstract»
Allocation

{root}

- Al locationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- Al locationStatus: StatusEnumeration

ProductAllocation

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

Zone

- ZoneGUID: GlobalUniqueIdentifierType
- ThirdpartyZoneId: GlobalUniqueIdentifierType
- ZoneDesignator: String
- ZoneSurfaces: MultiSurface [0..1]

Product
{root}

- ProductCode: CodeType
- ProductDesignator: String
- ApplicationRateUnit: RateUnitType
- ProductForm: ProductFormEnumeration

Applying Products on a
Crop(Field)

Operation realising
OperationTechniques
like:
- Spraying
- Planting
- Fertilizer broadcasting
-

TreatmentZone

{XOR}

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdentifierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- Earl iestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

AbsoluteTiming
{root}

- BeginDateTime: DateTimeType
- EndDateTime: DateTimeType
- AbsoluteTimingStatus: StatusEnumeration
- TimelinesValue: Real [0..1]

0..*

0..1

0..1

0..*

0..*

+source

0..1

0..*

0..1

0..* 1

0..1

0..1

9.1.3 Aggregating	Lots	
There are products for the retail market which can only be produced by assembling from different
sources. An example are the packages with three colors paprika and mixed bouquets of flowers. Another
clear example are farmers or cooperatives that blend fertilizers to a specific specification. Another
example is that a trader can only deliver an order when he combines products from two different
sources. In all these cases products or produce is used from BatchLots

Figure 4. Poduce- and ProductAllocation when assembling new BatchLot’s.

9.1.4 Sorting	Lots	
Lots of produce can be sorted in different ProduceQualityClass’es. In such a case each ProduceAllocation
defines one source BatchLot and one splitted BatchLot. Sorting leads to at least two different BatchLots,
and a sorting operation has therefore at least two ProduceAllocations.

It looks logical to have a multiplicity of 2..* on the splitted BatchLot side, but when we want to keep
track of the quantities coming from a source and going to a particular splitted BatchLot, we need for each
splitted BatchLot a ProduceAllocation, as this class specifies the quantity.

class Allocation_Aggregation

ProduceAllocation

«abstract»
Allocation

{root}

- AllocationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- AllocationStatus: StatusEnumeration

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

ProductAllocation

Product
{root}

- ProductCode: CodeType
- ProductDesignator: String
- ApplicationRateUnit: RateUnitType
- ProductForm: ProductFormEnumeration

Produce
{root}

- ProduceCode: CodeType [1..*]
- ProduceDesignator: String

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdentifierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- EarliestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

Blending
Packing

{XOR}

0..*

+source 0..1

1

0..*

+collected

0..10..* 0..* 1

0..*

+source

0..1

0..1

0..*

0..*

+collected 0..1
0..* 1

9.1.5 Application	of	Products	on	BatchLot’s	of	Produce.	
When products are stored, operations are carried out on the storage facilities (or containers) which hold
the BatchLot’s. These operations can control environmental variables like temperature and humidity, but
there are also operations which add products to the Produce. An example is germination retarding
products in potatoes, but also pesticides can be added to prevent pests. Another example is adding a
conservation product to grass because it is too wet during harvest.

class Allocation_Sorting

«abstract»
Allocation

{root}

- AllocationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- AllocationStatus: StatusEnumeration

ProduceAllocation BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

Produce
{root}

- ProduceCode: CodeType [1..*]
- ProduceDesignator: String

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdentifierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- EarliestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

A sorting operation

0..*

+source

0..1

0..*

1

1

+splitted

1..*

1

0..*

Figure 5. Application of Products on a BatchLot.

9.2 Analyses	and	sampling	

9.2.1 Sampling	
There are four types of samples recognized; soil samples, tissue samples, produce samples and product
samples. Soil samples are collected from a particular vertical layer. One or more vertical layers form a
profile. The profile has a position in space.

Tissue samples can be taken from growing crops (the possibility to take them from animals is not
considered yet for this reference model). Also Produce samples can be taken from crops when it is
intended to have a pre harvest analyses from those parts that will become Produce. Produce samples can
also be taken from BatchLots of produce and ProductSamples only from BatchLots. An example of the
latter is a sample from manure.

class Allocation_Products_on_Produce

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdenti fierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- EarliestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

ProductAllocation

«abstract»
Allocation

{root}

- AllocationGUID: GlobalUniqueIdentifierType
- ThirdPartyAllocationGUID: GlobalUniqueIdentifierType [0..1]
- Quantity: QuantityType [0..1]
- QuantityPerArea: RateType [0..1]
- RelativeDose: NumberValueType [0..1]
- BeginPosition: DirectPositionType [0..1]
- EndPosition: DirectPositionType [0..1]
- AllocationStatus: StatusEnumeration

Product
{root}

- ProductCode: CodeType
- ProductDesignator: String
- ApplicationRateUnit: RateUnitType
- ProductForm: ProductFormEnumeration

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

{XOR}

Storage

- StorageGUID: GlobalUniqueIdentifierType
- StorageDesignator: String

0..*

0..1

0..1

0..*

0..1

0..*

0..*

0..1

0..*

1

0..*

+treated

0..1

0..*

+source

0..1

Samples on crops or on vertical layers as part of profiles can be taken either from one point, or from a
collection of points or from a TreatmentZone. As an ActivityField and a CropField have always at least
one TreatmentZone, this covers also sampling whole fields.

Figure 6. Different categories of samples and where they can be taken from.

class Sample

Sample

- SampleGUID: GlobalUniqueIdentifierType
- SampleDesignator: Integer
- DateOfSampling: DateType
- DateOfReceipt: DateType
- Comment: String
- Description: String
- Volume: Real
- Weight: Real

Container

- ContainerGUID: GlobalUniqueIdentifierType
- ActualQuantity: QuantityType
- MaximumQuantity: QuantityType

ProductSample TissueSample SoilSample

VerticalLayer

- RelativeBeginHeight: double
- RelativeEndHeight: double
- AbsoluteBeginHeight: double
- AbsoluteEndHeight: double

Profile

SamplePoint

- SamplePointId: ID
- SamplePointDesignator: String

SamplePoints

- SamplePointsId: ID
- SamplePointsDesignator: String

ProduceSample

TreatmentZone

Zone

- ZoneGUID: GlobalUniqueIdentifierType
- ThirdpartyZoneId: GlobalUniqueIdentifierType
- ZoneDesignator: String
- ZoneSurfaces: MultiSurface [0..1]

Primitive

Geometries::
Point

MultiPrimitive

Geometries::
MultiPoint

MultiPrimitive

Geometries::
MultiSurface

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

10..*

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

1

+can be split in 1

1..*

0..*

1..*

Samples are collected in containers, which apart from conditioning of the sample and keeping it together
plays an important role in identification of the sample. It is either the place to hold a sample id, or it has
its own id which in the latter case must have a time indication to connect it to a particular sample.

Collection of samples is an Operation and has like other Operations also OperationTechniques. Manual
sampling can for example be distinguished from sampling with a quad. By assigning the sampling
operation to a Task it is possible to specify the Worker and participating equipment.

Samples can also be split. It is not uncommon to separate a part of a sample for biological soil analyses
(nematodes) and send it to another laboratory for chemical analyses.

9.2.2 Analyses	of	Samples.	
Samples are analysed and in this reference model it is assumed that this is done by a laboratory which
has an accreditation (certificate).

The result of an analyses is a propertyvalue of a particular PropertyVariable. A number of specific
PropertyVariables are shown as subclasses from PropertyVariable in Figure 7. In tracking and tracing the
substance which is a generic expression used for active ingredients of PlasntProtectionProducts, plays an
important role as Produce is restricted to certain levels of residue.

Figure 7. Analyses of samples.

class Analyses of Samples

Sample

- SampleGUID: GlobalUniqueIdentifierType
- SampleDesignator: Integer
- DateOfSampling: DateType
- DateOfReceipt: DateType
- Comment: String
- Description: String
- Volume: Real
- Weight: Real

Container

- ContainerGUID: GlobalUniqueIdentifierType
- ActualQuantity: QuantityType
- MaximumQuantity: QuantityType

Analysis

- ResultDate: DateType

PropertyValue
{root}

- Value: NumberValueType [0..1]
- Quantity: QuantityType [0..1]
- Rate: RateType [0..1]
- Percent: PercentType [0..1]
- CodedValue: CodeType [0..1]
- DoubleRate: DoubleRateType [0..1]
- PropertyvaluePurpose: PropertyValuePurposeEnumeration

PropertyVariable
{root}

- PropertyVariableCode: CodeType [1..*]
- PropertyVariableDesignator: String [0..1]
- ExtendedDesignator: String [0..1]
- MinimumValue: Real [0..1]
- MaximumValue: Real [0..1]
- Definition: String [0..1]
- ValueEnumerator: ValueEnumeration [0..1]
- NumeratorUom: CodeType [0..1]
- DenumeratorUom: CodeType [0..1]
- SecondDenumeratorUom: CodeType [0..1]

AnalysesMethod

- AnalysesMethodCode: CodeType
- AnalysesMethodDesignator: String

Organization

Serv iceProv ider

Laboratory

ChemicalSoilVariableSubstance

- ActiveSubstanceCode: CodeType
- SubstanceCategory: SubstanceCategoryEnumerator
- VariantCode: CodeType
- VariantRate: rate
- SubstanceDesignator: Definition BiologicalSoilVariable

PhysicalSoilVariablePhysicalPropertyVariable

- SizeDistribution: SizeDistributionType

0..*

1

0..1

1..*

0..*1

0..*

1

0..* 1

0..*

1

+can be split in 1

1..*

1..*

9.3 BatchLot	and	Delivery	
The class BatchLot is essential in tracking and tracing. When products are delivered to a retailers it is a
requirement that the Lot is identified on a specific category of packages.

The difference between Batch and Lot in the agricultural production chain is not clear defined and as long
as that is not the case there is no difference made between Batch and Lot. The class BatchLot is used.
It is defined as a specific identified number or quantity of a Product or Produce.

When products are delivered to a customer which can be an intermediary (trader, processor, and packer)
or a retailer, one or more BatchLots are delivered conform the order of the customer.

The pattern is shown in Figure 8.

TODO Add attributes to Order and Delivery.

Figure 8. Pattern for Delivery and BatchLot.

Tracing back to the source of a Product is possible by defining allocations. See 9.1 for further details.

9.4 Certificates	
An analyses is made of a number of certificates that are used in Agriculture. Up to now those certificates
are explicitly modelled in the reference model as they have a quit different structure. The only attribute
in common is the Designator, and likely the number can also be brought to a common attribute.

TODO: Issuing and reviewing of certificates must be worked out.

class drmCrop2

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

Supplier

Deliv ery

- DeliveryGUID: GlobalUniqueIdentifierType

Order

Customer

Party

Organization

- Phone: PhoneNumberType [0..1]
- WebPage: anyURI [0..1]
- E-Mail: anyURI [0..1]
- ChamberOfCommerceNumber: token [0..1]

1..*

1

1

1..*

0..*

1

+parent 1

+child 0..*

0..1

0..*

Opmerking [DG1]: Refer to GS1
for more details

class Certification

Farm

«abstract»
Organization

- Phone: PhoneNumberType [0..1]
- WebPage: anyURI [0..1]
- E-Mail: anyURI [0..1]
- ChamberOfCommerceNumber: token [0..1]

«abstract»
Party

{root}

- PartyGUID: GlobalUniqueIdentifierType
- ThirdPartyGUID: GlobalUniqueIdentifierType
- Designator: String
- PartyCategory: PartyCategoryEnumeration
- PartyRole: PartyRoleType [0..*]
- DeliveryAddress: DeliveryAddressType
- PostalAddress: AddressType
- VisitingAddress: AddressType

Certificate

- CertificateDesignator: String

ValidityPeriod

- StartDate: date
- Enddate: date

Plot
ProductionLocation

Field

- SamplingProtocol: CodeType [0..1]

Due to the different
structure of certificates,
they must be specified
individually as subclass.

SkalCertificate

- CertificateNumber: int
- DocumentNumber: int
- SkalNumber: int
- Version: ?
- TypeOfCertificate: TypeSkalCertificaatEnumeration
- DateOfCertificationOrDateOfAmandment: date
- DescriptionOfProductOrProductionProcess: string
- LocationWhereProductionprocessIsImplemented: String
- ScopeOfProduction: ?
- Category: ?
- ValidityPeriodBegin: date
- ValidityPeriodEnd: date
- DateOfControl: date

MSC_Certificate

- MSC_RegistrationNumber: String
- Version: String
- ReferenceToScope: URL
- ValidityPeriodBegin: date
- validityPeriodEnd: date
- CertifiedWithMSC_Since: date

BRC_Certificate

- CertificateNumber: int
- AuditorNumber: int
- BRC_SiteCode: int
- MeetRequirementsOfStandard: String
- Scope: String
- ProductCategory: int [1..n]
- Exclusion from Scope: int
- ReportNumber: int
- InitialAuditDate: date
- DateOfAudit: date
- ReAuditDuedate: date
- CertificateIssueDate: date
- CertificateExpiredate: date

HACPP_Certificaat

- CertificaatNummer: String
- Voldoet aan: String
- VanToepassingOp: String
- DatumUitgifteEersteCertificaat: date
- DatumUitgifteHuidigeCertificaat: date
- CertificaatVervalDatum: date

Common attributes of
the different certificates
has to be shifted under a
common name to the
certificate super class.

+valid

0..*

+certified

0..*

1 0..1

+certified

0..*

+reviewing

1

+issuing

1

+issued

0..*+operates
conform

0..1 0..*

0..*

+parent 1

+child 0..*

9.5 Composition	and	Substance	
For a number of products or Produce it is required that their composition is specified. At this moment two
Patterns are developed. ProductElement is developed in drmCrop, while Substance comes from the Plat
Protection Product datadixtionary.

TODO: fins a common approach for different categories of products.

9.6 CropProductionUnit	

Crop Production unit is still in the reference model as a heritance of “Teelt” from IMOT. There are two
arguuments to maintain it in the reference model.

1. There are farmers who want to aggregate different fields so they can use the same prescriptions
for the different fields as they have properties in common. The definition of CropField, in line
with rules from the EU does not allow to treat surfaces which are not continuous as one
CropField. CropProductionUnit facilitates to group more CropFields together.

2. Activities on a CropProductionUnit can extend the time that it is grown on a field. Sometimes
work on a BatchLot of planting material is for a particular CropProductionunit, and after
harvesting also storage, drying, sorting on BatchLot’s of Produce can be assigned to a particular
CropProductionUnit.

class ProductComposition

Product
{root}

- ProductCode: CodeType
- ProductDesignator: String
- ApplicationRateUnit: RateUnitType
- ProductForm: ProductFormEnumeration

ProductComposition

- Rate: RateType
- Source: int [0..1]

ProductElement

- ProductElementCode.: CodeType
- ProductElementDesignator: string

PropertyVariable
{root}

- PropertyVariableCode: CodeType [1..*]
- PropertyVariableDesignator: String [0..1]
- ExtendedDesignator: String [0..1]
- MinimumValue: Real [0..1]
- MaximumValue: Real [0..1]
- Definition: String [0..1]
- ValueEnumerator: ValueEnumeration [0..1]
- NumeratorUom: CodeType [0..1]
- DenumeratorUom: CodeType [0..1]
- SecondDenumeratorUom: CodeType [0..1]

Substance

- ActiveSubstanceCode: CodeType
- SubstanceCategory: SubstanceCategoryEnumerator
- VariantCode: CodeType
- VariantRate: rate
- SubstanceDesignator: Definition

11..*

1..*

0..*

1

0..*

Figure 9. CropProductionUnit

9.7 Job	Task	Operation	

9.7.1 Operation	
From an agronomical point of view, certain activities are to be performed on crops growing on a field, or
sometimes also on batches or Lots of product (for example seed potatoes) or stored produce (grain in a
silo). Also repair and maintenance activities on equipement and buildings are Operation’s.

Such an activity with an agronomical purpose to be performed on a certain object (Field, Batch,) in a
certain time period is called an Operation.

REMARK. Repair and maintenance activities of machinery and buildings and activities around animal
husbandry can also be called operations. In that sense the definition will be extended to more objects
and more purposes apart from CulturalPractise.

class CropProductionUnit

CropProductionUnit
{root}

- CropProductionUnitGUID: GlobalUniqueIdentifierType
- CropProductionUnitDesignator: String
- CropProductionUnitYear: Integer
- CropTypeCode: CodeType
- VarietyCode: CodeType
- CropProductionPurposeCode: CodeType
- ProductionTypeCode: CodeType

Variety
{root}

- VarietyCode: CodeType
- VarietyDesignator: String

CropProductionPurpose

- CropProductionPurposeCode
- CropProductionPurposeDesignator: String

Plot

CropField

- Status: StatusEnumeration
- CropYear: Integer
- Organic: Boolean [0..1]
- CropProductionSequence: CroppingSequenceEnumeration [0..1]
- CropProductionPeriodCode: CodeType
- GrowthEnvironmentCode: CodeType
- LocationDesignator: String

CropClass
{root}

- CropClassCode: CodeType
- CropClassDesignator: String
- ScientificName: String
- FamilyName: String

BatchLot

- LotGUID: GlobalUniqueIdentifierType
- LotDesignator: String

0..* 0..1

1

+grown 0..*0..*

0..1

0..*

1

0..*
1..*

1

1..*

0..1

0..*

0..*

0..*
0..*

1..*

1..*

1..*

Definition.
An Operation performs a particular OperationTechnique on a particular CropField, ActivityField,
CropProductionUnit or BatchLot to realize a certain CulturalPractise.

9.7.2 CulturalPractice	
The agronomical purpose (objective) of the Operation is called a CulturalPractise.

It is not sure whether CulturalPractise’s can be standardized internationally. From one side they are
quite common for arable farming and forage production all over the world, on the other side it is difficult
to foresee all different regional situations and especially the level of required detail might differ.
AgroConnect CodeLists CL291 and CL293 are an effort to standardise CulturalPractises on two levels of
detail.

The need for a relatively short list of standardized CulturalPractice’s might come from processors that
need information on how the crop is grown for evaluation or for a certification authority. A solution could
be that a farm management system leaves it open for the farm manager to define the CulturalPractice’s.
The farmer specifies the code and the coding list of the CulturalPractice’s which are required by his
processors or certification authorities. In that way it can be adapted on the local situation. (A problem
might arise when different party’s require a different structuring/categorization of CulturalPractices.)
Maybe it is possible to come to a national standard list for CulturalPractices.

Operations are even much more region-, farm-, crop-, season- and time- specific. The CulturalPractice
“Stubble tillage” can for example be realized by two operations “Chisel ploughing” (in Dutch “vaste tand
cultivateren”) followed by “stubble ploughing”. (In Dutch “stoppel ploegen”). Operations that realize the
Cultural Practice “Fertilizer application” can be: “phosphate fertilization”, “first nitrogen application”,
“second nitrogen application”,” third nitrogen application”, “potassium application”, etc. The Cultural
practice “disease control” in potatoes will have such a large number of operations called “phytophthora
spraying” that a farmer might even not take the effort to give them a distinguished Designator, while
they are all different Operations, with a different time period (and have therefore a different Id).

It is impossible to have a standardized coding list for Operations. They are instances of an activity
following an OperationTechnique with a certain purpose (CulturalPractise) on a certain object in a certain
time period. The consequence is that a farm management system should give the farm manager (or
advisor) the possibility to define Operations, which are linked to an eventually standardized
“CulturalPractice” and performed following a standardized OperationTechnique. (See further on.) A
TaskController on a tractor can show the designator for the Operation, which has a meaning for the
driver, but has no meaning for the TaskController itself. (For the TaskController it gets a meaning by the
link to the standardized OperationTechnique)

9.7.3 OperationTechnique	
CulturalPractices, and as a consequence Operations, can be performed by different
OperationTechniques. As example: fertilizers can be broadcasted or side banded. Planting of seeds can
be done as broadcasting, drilling or precession planting. The OperationTechnique’s must be
internationally coded and well defined because it must be known which implements are able to perform
these OperationTechnique’s, and TaskControllers commanding those implements must know which
implement are able to perform that technique. A proposed standard list of OperationTechniques is
CL292 from AgroConnect.

The farm manager is responsible that he has each of his CulturalPractice’s connected to one or more
OperationTechnique’s. This is the list OperationTechniqueCulturalPractice, which is part of his Farm
management System. (That can be his selection of the junction table of Appendix I) When specifying an
Operation he will first choose the CulturalPractice to fulfill and then he can choose the
OperationTechnique to specify how this Operation should be carried out. The part of the decision support
system that is responsible for resource scheduling has the information on which implements are able to
perform the Operation following the specified OperationTechnique, as Implements must have a list of one
or more supported OperationTechniques. This requires a junction table Implement (Device in ISO11783)
- OperationTechnique. An example of a list of Implements is provided in Appendix III and the junction
table of the implements with the OperationTechniques in Appendix IV. Some Decision Support Systems
that advise on the amount of inputs to use might also want information on the OperationTechnique, as
the efficiency of an input can differ due to the chosen technique. Side banding of phosphate for corn is
for example more efficient then broadcasting phosphate and an advice might differ in the amount

depending of the applied OperationTechnique. A possible list of OperationTechnique’s which can realize
certain CulturalPractices is given by AgroConnect.

Figure 10.

9.7.4 Task.	
Operations are seen from an agronomical point of view. Those Operations are to be performed by man
and/or machinery. The execution of an Operation by man and/or machinery is called a Task.

It is possible that one Operation is realized by two different combinations of man and machinery. An
example is combine harvesting, where one Operation called “Combine harvesting of wheat behind the
barn” must be realized within a certain time period by two combines, each with a driver.

Another situation is where two different Operation’s, which realize different CulturalPractise’s are realized
at the same time with one combination of men and machinery. An example is the Operation
“seedbedpreparation on Over de Weg” which is combined with the Operation “wheat drilling on Over de
Weg”, by a combination of a driver, a tractor, a rotary harrow and a drill mounted on the rotary harrow.

class Operation_CulturalPractise_OperationTechnique

Operation
{root}

- OperationDesignator: String
- OperationGUID: GlobalUniqueIdentifierType
- ThirdPartyOperationId: GlobalUniqueIdentifierType [0..1]
- EarliestBeginDateTime: DateTimeType
- LatestEndDateTime: DateTimeType
- OperationStatus: StatusEnumeration

OperationTechnique

- OperationTechniqueCode: CodeType
- OperationTechniqueDesignator: String

CulturalPractice

- CulturalPractiseCode: CodeType
- CulturalPracticeDesignator: String

JunctionTable to be
implemented by a farm
management
Information System

1..*

1..*

0..*

+used 1

0..* 1

Definition.
A Task is the execution of one or more Operation's.

Remark.
An Operation can be executed by more Tasks.(See example below). Therefore, there is a many to many
relation between Task and Operation.

Example.
There is one Task "Harrowing and Drilling", which performs two Operation's; one is "Harrowing" and the
other is "Drilling".
On the other hand, there can be two Task's that realize one Operation. For example two combines
harvesting on one ActivityField.

The consequence is that an Operation can be performed by two Task’s (the combine example) and that a
Task can perform two Operation’s (the harrowing drilling example). The drmCrop reference model
specifies this as a many to many relation, which will require that the farm management System has a
junction table.

A combination of man and machine executing a Task is called a ManMachineSystem. A
ManMachineSystem can be defined as man and machinery which are “physically connected”. An example
is a tractor with an implement and a driver. The practical reason to distinguish a ManMachineSystem is
that it, normally speaking, will be controlled by one TaskController.

9.7.5 TaskCategory	
As a Task is (part of) one or more Operations performed on a particular ActivityField in a particular time
period, there is a need for a TaskCategory class to define the kind/type of Tasks which can be performed
by the available equipment and that are relevant for the farm. As there is a large number of combination
of implements possible and farmers will be very inventive in new efficient ways of working, it makes little
sense to compile a standardized list of coded TaskCategories. There should be a possibility for a farmer
to define his TaskCategories. An example of a list of Taskcategories is given below.

TODO Check example with latest version of CL292.

TaskCategory OperationTechnique(s)
Stubble ploughing Stubble moldboard plowing
Ploughing Moldboard ploughing
Seedbed preparation Rotary harrowing
Grain Drilling Drilling
Drill combination Rotary harrowing + Drilling
Granulate application Drilling
Planter combination Rotary harrowing + Potato planting + Full field granulate application +

Band granulate application2
Spraying full field spraying
Spraying and transport Full field spraying + water transport by sprayer
Potato ridging ridging
Fertilizer application Broadcasting
Manure application Injection
Baling Square baling
Combining Combining
Forage chopping Forage chopping
Sugar beet harvesting sugar beet lifting + Sugar beet topping + Sugar beet loading
Potato harvesting Potato leaf chopping + Potato lifting + Potato loading
Water transport water transport by tankwagon.
Grain Transport Transporting grain
Sugar beet Transport Transporting rootcrops
Potato Transport Transporting rootcrops

2 This is a combination with a rotary harrow in the front, a full field granulate applicator which disposes in front
of the harrow, a potato planter in the rear hitch with a granulate applicator mounted in the planter for
application in the plant row (banding). This is a challenging combination; in one ActivityField two different
operation techniques (full field and banding) are applied for one CulturalPractise (nematode control). So apart
from an application rate, also an application method must be specified in treatment zones. This situation needs
to be worked out. (a solution could be to define two different Operations, one for banding and one for full field
application).

Problems that arise by creating yield maps when two combines worked on the same field can be
caused by not realizing that there is one Operation, harvesting, performed by two Tasks. When there
is defined that the Operation is performed by two Task’s, in the junction table TaskOperation, there is
a control that yield maps logged under those two tasks must be combined to realize the complete
map for the Operation.

Bale loading Loading bales
Bale transport Transporting bales

9.7.6 Job	
A job is the work executed by one ManMachineSystem, or a number of ManMachineSystem’s which work
organisationally together. An example is one ManMachineSystem consisting of one combine harvester
and a driver, working together with a number of other transport ManMachineSystem’s who each exist of
a driver, a tractor and a trailer (grain cart).

In resource planning it is relevant to formulate Job’s, as it must be guaranteed that the resources (men,
tractors and implements) required to perform the Job are available in the same time period and are not
assigned to other Job’s in that period. Formulation of JobCategories, which specify the TaskCategories
that can be combined in a Job and the resources which can form a Job is required for efficient Job
formulation. Estimation of the required time to execute a Job is determined by the resources which form
the ManMachineSystem’s that realize the Job and their way of operating (as example the size of grain
carts and unloading during combining or unloading at the headland). Some examples of JobCategories
based on the available resources are given below.

During execution of a Job it might be relevant to have a form of Job control. In a case of silage maize
harvesting it is relevant to adjust the number of transport units, based on idle time of either the chopper
or of the transport units.

The relation between Job and Task is quit straightforward; A Job exists of one or more Task’s.

Example of Job Categories. TODO Formulate task categories in this example.

JobCategory Resource.
Grain drilling Worker 1
 Green tractor
 Grain drill
 Wagon 6 m old
Potato harvesting with two transport units Worker 1

 Worker 2
Worker3
Worker4
Big Green tractor
Blue tractor
Green tractor
Potato harvester
Tipping trailer 7 ton
Tipping trailer 9 ton
Potato Hopper
Conveyer

Potato harvesting with one transport units Worker 1
Worker 2
Worker3

Big Green tractor
Blue tractor
Potato harvester
Tipping trailer 9 ton
Potato Hopper
Conveyer

9.8 Party	and	sub	classes	

Party is the abstract root class of all entities that have a legal connotation in Business activities. drmCrop
distinguishes two abstract subclasses; Organisation and Person.

In analogy of Inspire, there is an AgriculturalProductionHolding (Inspire’s Holding), which can realise its
activities on one or more sites. The sites are represented by Farm or GreenhouseComplex in drmCrop.
(More categories of sites may follow when the scope will be broaddifferent classes of service providers
etcened) Apart from Farm and GreenhouseComplex some sentities are specified like Contractor and
different classes of service providers. Apart from that also Supplier and Customer are specified. In some
processes they represent a specific role of an organisation, but they can be identical to one of the non-
abstract organisations like contractor and farm.

Figure 11. Party and its subclasses.

9.9 Plots	and	Fields.	
Inspire refers to Plots which can be situated in other Plots. This allows for a lot of freedom to define
different areas for CropProduction. In drmCrop is chosen to distinguish plots that have specific
characteristics or have different purposes. All variables that the different categories of Plot have in
common are specified in an abstract Object “Plot”, but this has to be implemented by a specific
subclass. Like in Inspire, there is a reciprocating relation, but this will be eliminated later on, as the
relations will be made specific for the different categories of plots.

All categories of plots in drmCrop are continuous surfaces.

class Party

Manager

«abstract»
Party

{root}

- PartyGUID: GlobalUniqueIdentifierType
- ThirdPartyGUID: GlobalUniqueIdentifierType
- Designator: String
- PartyCategory: PartyCategoryEnumeration
- PartyRole: PartyRoleType [0..*]
- DeliveryAddress: DeliveryAddressType
- PostalAddress: AddressType
- VisitingAddress: AddressType

«abstract»
Person

- FirstName: String [0..1]
- MiddleName: String [0..1]
- LastName: String [0..1]
- BirthDate: DateType [0..1]
- Gender: GenderEnumeration
- Title: String [0..1]
- PrivatePhone: PhoneNumberType
- PrivateMobilePhone: PhoneNumberType
- PrivateE_Mail: anyURI
- Salution: String

«abstract»
Organization

- Phone: PhoneNumberType [0..1]
- WebPage: anyURI [0..1]
- E-Mail: anyURI [0..1]
- ChamberOfCommerceNumber: token [0..1]

Contractor

Farm

Worker

- WorkPhone: PhoneNumberType
- WorkMobilePhone: PhoneNumberType
- WorkE-Mail: anyURI
- JobTitle: normalizedString

Driv er

Serv iceProv ider

AgriculturalProductionHolding

SupplierCustomer

Adv isor

Adv isoryServ iceLaboratory

GreenHouseComplex

1

0..*
+employed

0..*

+work

1

+hired
0..*

+customer

0..*

1

0..*

+parent 1

+child 0..*

Fields are the more or less permanent plots which stay over more years, up to a moment that structural
changes occur. From season to season one or more CropFields can be situated in a Field. A CropField is
grown with one CropClass and has a begin and an end date.

An activityField is the continuous surface at which an Operation will be executed. In most cases that will
be the exact surface of a corresponding CropField, but it can be that two adjacent CropFields, which are
identified separately (for example because a difference in the QualityClass of seed potatoes) will in
executing Operations be operated as one unit. It is also possible that an order is given to a contractor to
operate only a part of a CropField. (For example sugarbeet harvesting in two separate periods of time)

Figure 12. The different categories of Plot

A special category of plot is a Greenhouse. It is equivalent to a Field in that sense that its surface will
stay constant for a longer period of time. Like a Field, it is possible to locate one or more CropFields
during the growing season in the Greenhouse.

In the situation of CropFields in a Greenhouse, the restriction on a CropField of a continuous surface
should be handled not too restrictive, as paths might separate surfaces, but it is left to the grower to
neglect this. The requirement of one CropClass must be maintained, so surfaces separated by a path
must be of the same CropClass when they are assigned to one CropField.

class Plots and Fields

«abstract»
Plot

{root}

- PlotGUID: GlobalUniqueIdenti fierType
- ThirdPartyPlotGUID: GlobalUniqueIdentifierType [0..*]
- Designator: String
- BeginDate: DateType
- EndDate: DateType [0..1]
- Border: FieldBorderType [0..1]
- Area: QuantityType
- CentreOfGravity: DirectPositionType [0..1]
- Country: CodeType
- XY_Coordinate: DirectPositionType [0..1]

CropField

- Status: StatusEnumeration
- CropYear: Integer
- Organic: Boolean [0..1]
- CropProductionSequence: CroppingSequenceEnumeration [0..1]
- CropProductionPeriodCode: CodeType
- GrowthEnvironmentCode: CodeType
- LocationDesignator: String

PrecedingCropField

- Area: QuantityType

Activ ityField

- Status: StatusEnumeration

ProductionLocation

Field

- SamplingProtocol: CodeType [0..1]

Greenhouse

- Covver: CodeType

CadastralField

- KadastraleIdentificatie: String
- OmschrijvingDeelPercelen: String

0..1

0..*

1

0..*1

0..*

1..* 1..*

0..*

1 0..1

0..*

CadastralField is corresponding to the National registration systems and might have country specific
subclasses.

9.10 Products	and	Produce	
Products are the inputs for agricultural Production and Produce is the result.

Fertilizers, seed, planting material, irrigation water are among the products. Crops can produce one or
more types of produce. A maize (corn) crop for example can produce whole crop silage, corn cob mix,
kernels and fresh cobs. Tomatoes can be delivered in different grades and on a bunch or loose, wheat
produces grain and straw.

Products can be worked out in more detail by subclasses, as can be seen by the example of Phytophthora
fungicides.

	
Figure 13. Products and Produce.

9.11 	

9.12 Values	and	Units	
Will be worked out later

class Products

Product
{root}

- ProductCode: CodeType
- ProductDesignator: String
- ApplicationRateUnit: RateUnitType
- ProductForm: ProductFormEnumeration

ProductCategory

- ProductCategoryDesignator: ProductCategoryEnumeration

PlantProtectionProduct

- PPProductFunction: CodeType
- PPProductOtherFunction: String
- FormulationCode: String
- FormulationTypeCode: CodeType
- TypeOfUser: TypeOfPPPUserEnumeration

Fertilizer

- Ferti l izerCategory: Ferti l izerCategoryEnumeration
- Ferti l izerDescription: char
- Safetysheet: char
- Formula: char
- Supplement: char
- SKAL_Accepted: boolean
- EC_Accepted: boolean
- ContainerText: char
- GeneralApplicationInstruction: char
- AdvicedApplicationDose: float
- Comment: char
- RegulatoryWorkingCoefficient: PercentType
- AgronomicWorkingCoeeficient: PercentType

ApplicationMedium

- ApplicationMedium: ApplicationMediumEnumeration

SeedAndPropagationMaterial

- Classification: CodeType
- PropagationMaterialCategory: CodeType
- Treatment: CodeType

CropClass
{root}

- CropClassCode: CodeType
- CropClassDesignator: String
- ScientificName: String
- FamilyName: String

Variety
{root}

- VarietyCode: CodeType
- VarietyDesignator: String

PotatoVariety

- PhytophthoraResistanceClassLeaves: PhytophthoraResistanceClassEnumeration
- PhytophthoraResistanceClassTubers: PhytophthoraResistanceClassEnumeration

Fungicide

PhytophthoraFungicide

- RecommendedDose: RateType
- LeafBligthEffectiviness: NumberValueType
- NewGrowthEffectiviness: NumberValueType
- StemBlightEffectiviness: NumberValueType
- TuberBlightEffectiviness: NumberValueType
- Protectant: NumberValueType
- Curative: NumberValueType
- AntiSporulant: NumberValueType
- Rainfastness: NumberValueType
- MobilityInThePlant: String

PhytophthoraProtectionCategory
{root}

- ProtectionCategory: PhytophthoraProtectionEnumeration

«enumeration»
Enumerations::

PhytophthoraResistanceClassEnumeration

 VERY_SUSCEPTIBLE
 FAIRLY
 REASONABLE
 GOOD
 VERY_GOOD
 to be completed !!

Produce
{root}

- ProduceCode: CodeType [1..*]
- ProduceDesignator: String

1..*

1..*
0..*

1

1..*1

1

0..* 0..*

1

0..*

1
1 1..*

10..*

9.13 Zones	

In a Greenhous it is possible to use a number of fixed zones to specify the surfaces of a CropField (or of
a TreatmentZone. Ps the association is to be added)

10 Appendix	II.	Some	use	cases.	

10.1 Potato	chain.	

10.1.1 From	harvest	onwards.	
This part of the use case description starts at the moment of harvesting.

class Zones

MultiSurface

Zone

- ZoneGUID: GlobalUniqueIdentifierType
- ThirdpartyZoneId: GlobalUniqueIdentifierType
- ZoneDesignator: String
- ZoneSurfaces: MultiSurface [0..1]

PropertyZone

- PropertyZoneGUID: GlobalUniqueIdentifierType
- PropertyZoneDesignator: String
- ThirdpartyPropertyZoneId: GlobalUniqueIdentifierType [0..*]
- PropertyZoneSurfaces: MultiSurface

TreatmentZone

Plot

CropField

- Status: StatusEnumeration
- CropYear: Integer
- Organic: Boolean [0..1]
- CropProductionSequence: CroppingSequenceEnumeration [0..1]
- CropProductionPeriodCode: CodeType
- GrowthEnvironmentCode: CodeType
- LocationDesignator: String

Env ironmentalProtectionZone

FixedZone

- VisualIdentification: String

Plot

Greenhouse

- Covver: CodeType

0..1

0..*

0..1

0..*

1

1..*

1..*

0..1

0..1 0..*

